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Abstract. An application of a method of test case generation for scientific 
computational software is presented. NEWTRNX, neutron transport software 
being developed at Oak Ridge National Laboratory, is treated as a case study. A 
model of dependencies between input parameters of NEWTRNX is created. 
Results of NEWTRNX model analysis and test case generation are evaluated. 

1   Introduction 

Testing scientific computational software has been the subject of research for many 
years (see, for example, [3, 4, 6, 7]). Because of the increase in size and complexity of 
such software, automation of scientific software testing is very important. A part of 
this task is test case selection from a large input space.  

For test automation, model-based approaches are most effective. In particular, we use 
Markov chain models to support automated statistical testing [13, 14]. The method and 
tools were initially applied to systems where sequences of discrete stimuli cause software 
responses and changes in the state of use. However, the behavior of computational 
software is more typically a function of a large multi-parameter static input space rather 
than sequences of discrete stimuli. Often all input parameters are entered as a batch, and 
then the software computes results with no further interaction with users. 

Although other testing methods (combinatorial testing [2, 5], etc.) are applicable to 
this problem, they are not as directly supportive of automated testing as the method 
based on directed graphs and Markov chains. We considered this problem in [12] 
where a method based on dependency relations encoded into Markov chain models 
was described. When mutual dependencies limit the set of valid input combinations, 
the method captures only the valid combinations. In this paper, we consider an 
application of this method to scientific software1. The case study is NEWTRNX [1] – a 
neutron transport simulation developed at Oak Ridge National Laboratory (ORNL)2.  
                                                           
1 This research is supported by the University of Tennessee Computational Science Initiative in 

collaboration with the Computing and Computational Sciences Directorate of Oak Ridge 
National Laboratory. 

2 Research sponsored by the Laboratory Directed Research and Development Program of Oak 
Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S. Department 
of Energy under Contract No. DE-AC05-00OR22725. 
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For NEWTRNX, as in most multiphysics simulations, the large number of input 
parameters and values makes manually selecting an arguably sufficient set of test 
cases very challenging. As a first step towards test automation, a model of 
dependencies among NEWTRNX input parameters is created. Then special tools can 
be used to generate test cases automatically from the model. In our test automation, 
we used JUMBL [10] – the J Usage Model Builder Library developed in the Software 
Quality Research Laboratory (SQRL) at the University of Tennessee.  

Sec. 2 presents a brief review of the method for modeling the input space. In Sec. 3, 
we describe the neutron transport software in very general terms. In Sec. 4, we apply 
our method to this specific case to create a model of dependencies among NEWTRNX 
input parameters. Sec. 5 contains results of model analysis and test case generation for 
the model from Sec. 4, using the JUMBL. Conclusions are discussed in Sect. 6. 

2   Modeling Input Space for Software Test Case Generation 

Modeling an input space for the purpose of test case generation was presented in [11] 
for independent input parameters and in [12] for the situations when dependencies 
between input parameters exist. The basis of the method is representation of the input 
space as a directed graph, where nodes represent input parameters and incoming arcs 
represent specific values of the parameters. Any path through the graph (a sequence 
of arcs) corresponds to a test case, so the graph can be used as a model for test case 
generation. 

From a usage point of view, there is some probability (relative frequency) that the 
parameter will have a particular value. We associate these probabilities with 
corresponding arcs of the graph, creating a probability distribution over the exit arcs 
of each node. This creates a model which satisfies the probability law of Markov 
chains, allowing analysis of the testing process via well-known mathematical 
techniques and software.  

Input space modeling can be illustrated with the following small example. 
Consider a system with three input parameters i1, i2, and i3, which can take the 
following values: 

 - i1∈{1, 2, 7, 9} 
 - i2∈{2, 5, 8} 
 - i3∈{3, 6, 9} 

If these parameters are independent, then all combinations are possible. One model of 
the input space for this situation is shown in Fig. 1. 
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Fig. 1. Model for independent parameters 
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When dependencies among parameters exist, we modify the model by splitting 
nodes and merging nodes [12]. Splitting nodes is used for a dependency between two 
parameters. For example, consider the following dependency between i2 and i3:   P1(i2) 
⇒ i3=6, where P1(i2) is the characteristic predicate for set {2, 8}. In other words, if i2 
takes value 2 or value 8, then i3 shall take only the value 6. To encode this 
dependency, we split i2 node into to nodes: (i2, P1) and (i2, P2), as shown in Fig. 2, 
where P2 is the characteristic predicate for set {5}. The model in Fig. 2 now satisfies 
the Markov probability law. The model can then be analyzed as a Markov chain and 
used for test case generation.  

 

Fig. 2. Model of dependency between i2 and i3 

Merging nodes is used for dependencies among several parameters. For example, 
suppose the pair (i2, i3) is dependent on i1:  
 - P3(i1) ⇒ (i2, i3)∈{(5, 9), (8, 3), (8, 9)}, where P3(i1) is the characteristic predicate 

for set {2, 9}. 
 - P4(i1) ⇒ (i2, i3)∈{(2, 3), (2, 6), (2, 9), (5, 3), (5, 6), (8, 6)}, where P4(i1) is the 

characteristic predicate for set {1, 7}. 
 

This dependency can be modeled in three steps (Fig. 3): 
 - Creating a new derived parameter (i2, i3) by merging parameters i2 and i3, 
 - Splitting parameter i1 according to predicates P3 and P4, 
 - Establishing arcs between i1 and (i2, i3) based on the possible values of (i2, i3).  

 

Fig. 3. Model of the dependency between i1 and (i2, i3) 
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Detailed information about this method, including the application of the method to 
different types of dependencies, results of test case generation, and more examples 
can be found in [12]. The purpose of the current paper is to apply this approach to an 
existing computational science software application.  

3   A Case Study: Neutron Transport Software (NEWTRNX) 

The NEWTRNX transport solver [1] was developed at ORNL to provide proof-of-
principle software for high-fidelity modeling of nuclear fission energy systems. The 
primary function of the solver is to provide the heat generation distribution of 
neutrons. 

Realistic nuclear reactor simulation is important because it requires an accurate 
understanding of the interactions of multi-scale, multi-physics phenomena through 
complex models that may only be tractable with leadership-class computing facilities. 
The distribution of neutrons within the nuclear vessel is described by the seven-
dimensional isotropic source-driven or forward eigenvalue neutral-particle Boltzmann 
transport equation (equations 1-3) [8], where the fundamental unknown, ψ , is the 

time-dependent space-velocity distribution of neutrons in the system.   
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Solving for the space-velocity distribution for even simple geometries requires a 
large number of degrees of freedom (dof) for an accurate solution (traditionally 109 
dof per time-step for small single-processor calculations). To solve the equation, the 
direction of neutron travel is discretized into a set of uncoupled discrete-ordinate 
directions for a given neutron energy.  Similarly, the energy (speed) of the neutron 
utilizes a piecewise-constant (“multigroup”) discretization.  This leads to a multi-level 
iterative solver where “outer” iterations solve for the coupling of the energy terms for 
all space and angular moments and “inner” iterations solve for the coupling of all 
directions for a given energy “group” [8].  

There are various methods to solve the inner and outer iterations, as well as 
possible communications strategies. Many of these options are dependent on other 
options. For example, there are many ways to choose the discrete-ordinate directions, 
such as a 3d level-symmetric or a 2d/1d product quadrature set [8]. The type of 
quadrature set and number of directions constrain the number of angular moments 
that can be accurately computed.  This leads to a large and inter-dependent input 
space that must be regularly tested for robustness and accuracy. This testing task 
necessitates automation.  

4   Modeling Dependencies among Input Parameters of 
NEWTRNX 

One important aspect of NEWTRNX is the ability to specify different problem 
definitions and various mathematical methods for solving each defined problem.  It 
allows the user to choose various input options by setting values of the following 
input parameters: 

  - mode - type of the problem (isotropic or forward) 
  - nSpherical - number of harmonics moments used to represent the  

anisotropic scattering source 
  - quadrature - type of quadrature set utilized (level-symmetric or product) 
  - nSn - level-symmetric quadrature set order (even numbers) 
  - nAziProd - azimuthal (2d) portion of the product quadrature set 
  - npolar - polar (1d) portion of the product quadrature set (3d is the product of  

nAziProd and npolar) 
The parameters mode and nSpherical can be assigned their values 

independently, but there are dependencies between quadrature and other 
parameters: 
    - If quadrature equals symmetric, then parameter nSn is used and 

nAziProd and npolar are not used. 
    - If quadrature equals product, then parameters npolar and nAziProd 

are used but nSn is not used. 

To reflect this dependency, we split parameter quadrature into two nodes, as 
described in Sec. 3.1. The structure of the dependency is presented in Fig. 4 (values of 
the parameters are not shown). 
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Fig. 4. Structure of the dependency among quadrature and nSn, nAziProd, npolar 

The dependency among nSpherical, nSn, nAziProd, and npolar is shown in Table 1. 
The left column contains all possible values of nSpherical, and the other columns contain 
corresponding values of nSn, nAziProd, and npolar for every value of nSpherical. 

Table 1. Dependency among nSpherical and nSn, nAziProd and npolar 

nSpherical nSn 

{0, 1} 
{2, 4, 6, 8, 10, 12, 

14, 16} 
{2} {6, 8, 10, 12, 14, 16} 
{3} {10, 12, 14, 16} 
{4} {14, 16} 
{5} - 

nSpherical npolar nAziProd 

{0, 1} 
{1, 2, 3, 
4, 5, 6} 

{1, 2, 3, 4, 
5,…, 12} 

{2, 3} 
{2, 3, 4, 

5, 6} 
{2, 3, 4, 
5,…, 12} 

{4, 5} 
{3, 4, 5, 

6} 
{3, 4, 5,…, 

12} 
 

Five different groups of values of nSpherical correspond to only four groups of 
values of nSn and to three groups of values of nAziProd and npolar. To reflect 
this, we split the node for nSpherical into five different nodes (Fig. 5). Then for 
each of these five nodes, we reflect the dependency on quadrature by splitting the 
node for quadrature into two nodes.  

The model in Fig. 5 shows all dependencies between pairs of NEWTRNX input 
parameters and can be used for test case generation. Note that the model contains only 
necessary states (five for nSpherical, four for nSn, and three for nAziProd and 
npolar). 

5   Test Case Generation for NEWTRNX 

The model in Fig. 5 is a Markov chain model of valid input parameter combinations. 
We use the JUMBL [10] for the following tasks: 

 - Analysis of the Markov chain model. 
 - Test case generation based on the model. 
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To define a model for input to the JUMBL, the model is described in The Model 
Language (TML [9]). First the JUMBL is used to check logical consistency of the 
model and then to produce a model analysis report.  General information includes 
numbers of nodes, arcs, stimuli, etc., as shown in Fig. 6 for the NEWTRNX model. 
Detailed information includes long run model statistics for nodes, arcs, and stimuli. 
Of particular interest are statistics for stimuli (Fig. 7) because they directly describe 
the long run use of different input values represented by the model. 

Here “occupancy” is the number of occurrences of a given value (stimulus) divided 
by the total number of stimuli occurrences. “Mean occurrence” is the average number 
of times the specific value occurs in a single test case.  

 

Fig. 5. Dependencies between input parameters of NEWTRNX 
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Fig. 6.  NEWTRNX model statistics (fragment from JUMBL output) 

 

Fig. 7. NEWTRNX stimulus statistics (fragment from JUMBL output) 

Table 2. NEWTRNX weighted test cases (fragment) 

N
Probab
ility mode nSphe 

rical 
quadra 
ture nSn npolar nAziProd 

1 0.027 forward 3 symmetric 10 - - 
2 0.027 forward 0 symmetric 10 - - 
3 0.027 forward 1 symmetric 10 - - 
4 0.022 forward 5 product - 3 6 
5 0.022 forward 5 product - 3 3 
6 0.021 forward 0 product - 3 6 
7 0.021 forward 0 product - 3 3 
8 0.021 forward 1 product - 3 6 
9 0.021 forward 1 product - 3 3 
10 0.016 forward 3 product - 3 6 

 

Various types of test cases can be generated from the model including model 
coverage tests, random tests, and weighted tests. Coverage tests are generated as the 
minimal set of test cases that cover every arc in the model. Thus, to cover all arcs in 
the NEWTRNX model, 53 test cases were generated. Random test cases are generated 
according to the probabilities on the arcs. Weighted test cases are those generated in 
order of decreasing probability. For random and weighted tests, the number of test 
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cases can be specified. A separate file is created for every test case. The ten highest 
probability test cases for the NEWTRNX model are shown in Table 2, with their 
individual probabilities of occurrence. Statistics for the 53 coverage tests and the ten 
most likely tests are provided in separate test analysis reports (Fig. 8).  

Random test cases can be generated for reliability estimation. The "optimum" 
reliability represented by a particular set of test cases can be computed prior to test 
execution by assuming that all test cases will be successful. These values can be used 
during test planning for estimation of the required number of test cases. When testing 
is completed and the number of failures is known, operational reliability estimates are 
included in a test analysis report.  

 

Fig. 8. NEWTRNX model test case statistics (fragment from JUMBL output) 

6   Conclusions 

Specification of all valid test cases from a large input space can be a challenging task, 
especially when there are dependencies among input parameters. We have presented a 
method for solving this problem and demonstrated its practical application on the 
neutron transport software tool NEWTRNX.  

The selection of test cases is performed in two steps. First, a Markov chain model 
of the input space is created, reflecting dependencies among input parameters. 
Second, the JUMBL library of software tools is used for model analysis and test case 
generation. Results for NEWTRNX test planning are provided. The case study shows 
the applicability of model-based statistical testing for testing large scientific 
computational software systems. The next phase of this effort will investigate 
methods for automating both test execution and results checking. 
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